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1 INTRODUCTION 

The Marciniak-Kuczynski (MK) type of model is widely used as a framework to develop 

models for the prediction of localized necking in sheet metal forming, though it is by no 

means the only model. Other types include the bifurcation type of model, see e.g. Hashiguchi 

and Protasov (2004), and the perturbation type of model, as in Boudeau et al. (1998).

Since the original paper of Marciniak and Kuczynski (1967), understanding of the localized 

necking phenomenon has greatly advanced. In the original paper, the existence of an initial 

groove with diminished thickness, of infinite length and oriented along the minor strain 

direction, was assumed in order to predict the forming limit of monotonic strain paths in the 

right-hand side of the Forming Limit Diagram (FLD). Later on, as in Hutchinson and Neale 

(1977a), it was extended to cover the whole range of the FLD by considering all possible 

initial orientations of the groove and retaining the lowest value of the major strain at the onset 

of localized necking as the limit strain. In a sense, the groove in the MK model is an idealized 

form of the inhomogeneous nature of plastic properties of the sheet, and from consideration of 

a large number of groove orientations, the weakest direction in the sheet with respect to 

localized necking resistance can be retrieved.

The accuracy in the right-hand side of the FLD has increased over the years by improvements 

of the constitutive behaviour. It was recognised, e.g. in Hutchinson and Neale (1977b), that 

taking strain-rate sensitivity into account shifts the Forming Limit Curve (FLC) to higher 

major strain levels in better accordance with experiments. This effect is even significant for 

materials with low strain-rate sensitivity, such as steels (Ghosh (1977)). The use of more 

realistic yield loci results in an improved shape of the predicted FLC in the right-hand side of 

the FLD. In Barlat (1989), different isotropic yield loci were used in an MK model: i.e. the 

polycrystalline Taylor-Bisshop-Hill yield loci for random crystallographic texture, using fcc 
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or bcc slip systems. They produce FLCs that are quite realistic compared to the Tresca and 

von Mises yield loci which result in gross under- or overestimation, respectively. The 

significance of the yield surface shape for the right-hand side of the FLD is further explored 

in Lian et al. (1989), where it is shown that the FLC shape is strongly related to the yield 

surface shape between plane strain deformation and equibiaxial stretching. The stress increase 

during the strain path change towards plane strain of the groove in the MK model results in a 

delay in the onset of necking in the right-hand side of the FLD. These authors proposed the 

‘yield surface shape hardening diagram’, which is derived from the yield locus, to assess the 

delay of necking in this region of the FLD. In Yao and Cao (2002), mixed isotropic-kinematic 

material hardening is considered within an MK analysis. It is shown that forming limits are 

also sensitive to anisotropic hardening, modelled by the kinematic shift of the yield locus.

In recent years, physical plasticity models have been used within the MK framework, e.g. in 

Knockaert et al. (2002), which uses a rate-independent polycrystal plasticity model with 

Taylor homogenization scheme. Such material modelling allows taking the evolution of the 

crystallographic texture during forming into account, and is a further improvement in the 

accuracy of FLC predictions. Different studies on this topic indicate that it depends on the 

initial texture whether or not formability is influenced by texture evolution. In Inal et al. 

(2005), employing a rate-sensitive elasto-plastic polycrystal plasticity model, the effect of 

texture evolution on formability was found to be negligible, while in Tóth et al. (1996), the 

study of the formability of three aluminium textures shows the tendency to equalize the 

forming limits of the different textures and lower them when texture development is 

considered. This last study uses the rate insensitive Taylor approach of polycrystal plasticity. 

The effect of the cube texture component in aluminium is studied with a rate-dependent 

plasticity model in Wu et al. (2004), where it was found that the spread around the ideal 

texture component determines whether or not formability is influenced by texture evolution 
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under equibiaxial stretching. Signorelli et al. (2009) use a viscoplastic self-consistent (VPSC) 

polycrystal material model within the MK framework. It is demonstrated that the different 

textural evolutions associated with a difference in initial texture, can shift the right-hand side 

of the predicted FLC up- or downwards to a significant extent. It is also seen that a higher 

grain aspect ratio in the VPSC model reduces limit strains in the right-hand side of the FLD. 

In Neil and Agnew (2008), dislocation-based plasticity as well as mechanical twinning of a 

Mg alloy (hcp) is considered, at different elevated temperatures, within the framework of a 

VPSC material model. It is found that twinning can promote the resistance to localized 

necking.

Although the FLD is a widely spread tool in press shop practice, it has its limitations. In its 

original form, it can not be used for formability predictions under non-monotonic loading

conditions, for sheets which are bent during forming, and for sheets subjected to non-zero

stresses normal to the sheet plane during forming. Insights in these limitations have been 

established in the past through the MK model concept, as discussed next.

In an extensive study by Barata da Rocha (1989), it is found that under equibiaxial stretching 

followed by uniaxial tension, formability is dramatically lower compared to the monotonic 

FLD, while much higher limit strains are obtained under uniaxial tension followed by 

equibiaxial stretching. As reported in this paper, the same trends are also found in 

experimental investigations. In Hiwatashi et al. (1998), the effect of anisotropic hardening at 

strain path changes (due to dislocation substructure development), is assessed with the 

hardening model of Teodosiu-Hu combined with a model for texture-based anisotropy. 

Anisotropic hardening after a strain path change, including transient hardening, is found to 

have a significant effect on subsequent formability. In a recent study of Yoshida and Suzuki 

(2008), the connection between anisotropic hardening at strain path changes (model of 
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Teodosiu-Hu) and the path dependency of the Forming Limit Stress Diagram (FLSD) was 

shown by investigation of the forming limit stress under 2-step strain paths obtained with a 

MK model. The path independency of the FLSD only holds in the case that the sheet material 

shows isotropic hardening after a strain path change; when it shows anisotropic hardening 

however, the FLSD gives an over- or underestimate of the predicted forming limit, depending 

on whether there is a decline or increase of hardening after the strain path change, 

respectively. The same conclusions are drawn in Yoshida and Kuwabara (2007), but based on 

the measurement of stress in tubular sheets subjected to a combination of axial loading and 

internal fluid pressure.

In order to introduce the effect of sheet curvature in a MK-type analysis, Shi and Gerdeen 

(1991) introduced a strain gradient term in the constitutive hardening law. Their results show 

the same trends as found in various experimental studies on the influence of punch curvature 

between the Nakazima and Marciniak forming limit tests, i.e. a curved sheet has higher 

forming limits.

MK models usually assume a zero normal stress in the sheet thickness direction. This 

assumption is not valid for forming processes in which a hydrostatic pressure is applied 

during forming. Recently, the effect of the hydrostatic pressure on formability has been 

investigated by Wu et al. (2008), using the MK model framework. Higher forming limits in 

hydrostatic pressure-supported processes are predicted, which has also been observed 

experimentally.

Sheet metal formability is often, but not always, limited by the onset of localized necking. 

Chien et al. (2004) extended the MK framework in order to also consider shear instability, 

besides localized necking instability. The shear instability is triggered by the assumption of a 

band of higher initial damage with an oblique orientation with respect to the sheet normal, and 
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situated within the groove of an MK model. Geometric compatibility and force equilibrium 

between this band and the surrounding groove material is enforced. Their model is justified on 

the basis of the fractographic observation of an aluminum alloy that shows shear instability 

within a shallow neck.

In this paper, it is investigated how and why the onset of localized necking can be affected by 

(plastic) Through-Thickness Shear (TTS), also known as out-of-plane shear. Some

publications have been made on TTS in the Single Point Incremental Forming (SPIF) process. 

Finite Element (FE) simulations (Eyckens et al. (2007)) and experimental studies (Allwood et 

al. (2007), Eyckens et al. (2008)) indicate the presence of TTS in SPIF processes.

In this paper, first the proposed generalized MK theory is developed, in essence through the 

addition of a new force equilibrium condition and new geometric compatibility conditions to 

those of a ‘conventional’ MK model (Hiwatashi et al. (1998)). Next, FLDs are presented, 

showing forming limits under monotonic deformation modes that include TTS. Finally, the 

formability under some selected deformation paths is discussed in more detail to explain the 

effect of TTS on formability in a qualitative way.

2 MODEL DESCRIPTION

2.1 CONVENTIONAL MK MODEL

The conventional MK model, i.e. as presented in Hiwatashi et al. (1998), is revisited next. In 

this forming limit model, the existence of a groove b with diminished thickness in a 

homogeneously deforming matrix a is assumed, as shown in Figure 1. 

The initial imperfection f0 is defined as

abf
000       (1)

in which x
0

is the initial thickness; the superscript x refers to either the matrix a or groove b.
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The velocity gradient of the matrix, expressed in the x1-x2-x3 reference system, is denoted 

[L
a
] and has the following form for an incompressible material subjected to a monotonic 

deformation:

aa D
11

22

22

100

00

001

L       (2)

The matrix strain mode is defined by:

a

a

D

D

11

22
22       (3)

called the in-plane strain rate ratio. To construct the monotonic FLC, 22 is taken to be a 

constant in the range -1/2 22 1. As an example of non-monotonic loading, two-stage 

strain paths are considered by Hiwatashi et al. (1998) with special attention to anisotropic 

hardening at strain-path changes.

Because L
a

is symmetric, it follows that the strain rate tensor of the matrix

D
a

1/2(L
a
+(L

a
)
T
) = L

a
, while the rigid body rotation rate of the matrix 

W
a

1/2(L
a
-(L

a
)
T
) = 0. Consequently, the x1-x2-x3 reference frame, shown in Figure 1, can be 

considered to be attached to the matrix material. 

In the analysis, the velocity gradient of the groove L
b

is calculated, which generally evolves 

during deformation, even under monotonic loading of the matrix. Nevertheless, during a small 

time increment, it is assumed to be constant. Moreover, when L
b

is expressed in the groove 

reference frame G, denoted [L
b
]

G
, it is assumed to be of the form:

b

b
tt

b
nt

b
nt

b
nt

b
nt

b
nn

b

b
tt

b
tn

b
nt

b
nn

Gb

D

DWD
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3333
00
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0

00

0

0

L       (4)
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in which the in-plane rigid body rotation rate of the groove material is characterized by b
ntW . 

For an incompressible material, the groove thickness strain rate bD
33

is equal to:

bbb
tt

b
nn

b DDDDD
221133

      (5)

The measure adopted here to characterize the strain 
x

(in either matrix or groove) is defined 

as the time integral of the respective strain rate tensor: 

T
x
ij

x
ij

T
xx tDort

00

ddD       (6)

in which T is the total time. The deformation of the matrix is imposed incrementally, i.e. using 

time inc T
a

= T D
a

for a constant D
a
. For a 

strain-rate insensitive material model as adopted in this paper, the scalar 
aD
11

in equation (2) 

may be chosen freely. For convenience, it is chosen in such a way that ||D
a
|| = 1, from which it 

follows that ||
a
|| T.

The current thickness (of matrix or groove) 
x

is defined as:

xxx
033

exp       (7)

The four unknowns b
nt

b
tt

b
nn DDD ,, and b

ntW of equations (4)-(5) are computed for each 

imposed matrix strain increment from the subsequent equations.

Firstly, the force equilibrium over the interface between matrix and groove is written as:

a
nn

ab
nn

b
      (8)

a
tn

ab
tn

b
      (9)

in which x
nn and x

tn are components of [
x
]

G
, i.e. the true (Cauchy) stress tensor of matrix 

a or groove b, expressed in the groove reference frame G.

Secondly, geometrical compatibility between matrix and groove is expressed as:

a
nt

b
nt LL     (10)
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a
tt

b
tt LL     (11)

in which x
ntL and x

ttL are components of [L
x
]

G
, i.e. the velocity gradient of matrix a or groove 

b, expressed in the groove frame G. The other non-zero components of [L
b
]
G
, i.e. b

tn
b
nn LL ,

and bL
33

, are ‘free’ with respect to the corresponding velocity gradient components of the 

matrix. These freedoms and the geometrical compatibility conditions are schematically 

illustrated in Figure 2. 

The groove orientation in a deformed state, determined by the angle , may vary from the 

initial groove orientation 0 due to the matrix deformation (see also Figure 1):

02211
tanexptan aa

    (12)

This also implies that the groove reference system G may rotate during the deformation.

Once a constant in-plane strain rate ratio 22 and initial groove angle 0 are chosen, the strain 

response of the groove for each matrix strain increment  follows from the 4 equations (8)-(11) 

with unknowns b
nt

b
tt

b
nn DDD ,, and b

ntW . In practice, this set of 4 unknowns is firstly reduced 

to 2 by rewriting the linear equations (10)-(11) as:

b
nt

a
nt

b
nt DLW     (13)

a
tt

b
tt DD     (14)

Secondly, the 2 remaining unknowns b
nnD and b

ntD are determined from the nonlinear 

equations (8)-(9) through minimization of the functional F:

22
, a

tn
ab

tn
ba

nn
ab

nn
bb

nt
b
nn DDF     (15)

The functional F depends on b
nnD and b

ntD since the groove stress tensor components b
nn

and b
tn are functions of D

b
(via the adopted constitutive law), and D

b
depends on b

nnD and 
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b
ntD only, after substitution of equations (5) and (14) into the symmetric part of equation (4). 

Also, 
b

is a function of b
nnD through equations (5)-(7) and (14). After minimization, the 

value of F is expected to be close to 0, i.e. F< with a small positive number related to the 

numeric precision of the minimization algorithm. In this paper, the Fletcher-Reeves-Polak-

Ribiere minimization algorithm (Press et al. (1992)) has been used.

Necking of the groove is said to occur when the necking criterion:

ab DD
3333

10     (16)

is satisfied. The factor of 10 in equation (16) is rather arbitrary and any other relatively large 

positive number can be used. The effect of this number on the matrix necking strain is 

minimal, since the absolute value of the groove thickness strain rate | bD
33

| increases very 

rapidly towards infinity at incipient necking.

A second criterion is also adopted, which states that necking of the groove occurs if there is 

no longer a solution to the nonlinear system of equations (8)-(11), i.e. when it is found that 

after minimization, F> .

The second necking criterion occurs more frequently for relative large matrix strain 

increments, e.g.
a
|| = 10

-2
, while the first is more frequent for smaller strain increments,

e.g.
a
|| = 10

-4
. Nevertheless very similar necking strains are found for different sizes of the 

chosen 
a
||.

For any particular strain mode 22, all initial values 0 in the range [-90°;90°] are considered, 

with an interval of 1°. The limit strain is found as the smallest matrix strain at necking of all 

these initial groove orientations. 
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2.2 TTS-MK MODEL

In its most general form, the imposed velocity gradient of the matrix L
a

would have 8 

independent components for an incompressible material, in contrast to equation (2) which 

only has 2 independent components. Since the scope of the present paper is only concerned 

with monotonic deformations (but nonetheless arbitrary in the sense that TTS is included), the 

form of the matrix deformation gradient need not be so general for an appropriate choice of 

the x1-x2-x3 reference frame in which the matrix deformation is described. This system is now 

defined as the frame for which 

(i) the x3-direction stays normal to the sheet plane throughout the deformation. This 

requirement implies that:

)2,1(03
3

i
x

v
L

i

a
a
i

  (17)

in which v
a

is the velocity field of the matrix. 

(ii) the x1- and x2- directions are the principal in-plane strain directions of the matrix, by 

which it is meant that they are chosen so that:

0
2112
aa LL   (18)

The matrix velocity gradient L
a

is then of the form:

aa D
11

22

2322

13

100

20

201

L     (19)

and the symmetric part of L
a
, the matrix strain rate D

a
, is given by: 

aa D
11

222313

2322

13

1

0

01

D    (20)

in which 3 quantities appear that characterize the matrix strain mode:



12

a

a

a

a

a

a

D

D

D

D

D

D

11

23
23

11

13
13

11

22
22 ,,     (21)

The strain rate ratios 13 and 23 correspond to the presence of TTS in the plane perpendicular 

to the minor and major in-plane strain directions, respectively. It can be noted that now the 

spin tensor of the matrix W
a

0. 

Expressed in the groove reference frame G, the groove velocity gradient L
b

= D
b

+ W
b

is now 

assumed to be of the form:

bb
t

b
t

b
n

b
n

b
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b
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b
nn
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DWDWD

WDDWD

WDWDD

LLL

LLL

LLL

333333

33

33

3333

3

3

L     (22)

Since equation (5) still holds, there are 8 independent unknowns in (22), described in 

components of the strain rate tensor ( b
n

b
nt

b
tt

b
nn DDDD

3
,,, and b

t
D

3
) and in components of the 

rate of rigid body rotation tensor ( b
n

b
nt WW

3
, and b

t
W

3
). Equations (6) and (7) are still used to 

calculate strain components and current thicknesses.

To calculate the groove velocity gradient (22), the set of force equilibrium equations (8)-(9) is 

extended with:

a
n

ab
n

b
33

    (23)

since a non-zero shear stress 3n is possible due to TTS. It can be shown that for the

conventional MK model, equation (23) is implicitly satisfied, as 0
33
b
n

a
n

(1)
.

Also the set of geometrical compatibility conditions (10)-(11) is extended:

a
t

b
t

LL
33

    (24)

                                                
1

For a von Mises material with isotropic hardening, it follows directly from the flow law (cfr. equation (35) with 

i = 3 and j = n). However, for an anisotropic polycrystal, determined by its crystallographic texture, it is required 

that the sheet normal (x3-axis) is a dyad axis with respect to crystallographic orientation. For many rolled sheet 

materials, this is a reasonable assumption.
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a
t

b
t

LL
33

    (25)

a
n

b
n

LL
33

    (26)

The additional geometric compatibility conditions and additional freedoms of the groove 

material are illustrated in Figure 3.

Regarding the compatibility condition (24), it can be noted that

0
3
a
t

L     (27)

which follows from the constriction (17) on the form of the velocity gradient of the matrix L
a
.

As in the conventional MK model, the groove rotation is given by equation (12). 

When a constant strain ratio 22 and initial groove angle 0 are chosen, the set of 8 equations 

(8)-(9), (23), (10)-(11) and (24)-(26) determine for each matrix strain increment the 8 

unknowns b
n

b
nt

b
t

b
n

b
nt

b
tt

b
nn WWDDDDD

333
,,,,,, and b

t
W

3
in equation (22) (taking into account 

equation (5)). In practice, this set of 8 unknowns is firstly reduced to 3 by rewriting the linear 

equations (10)-(11) and (24)-(27) into:

b
nt

a
nt

b
nt DLW     (28)

a
tt

b
tt DD     (29)

2
33

a
t

b
t

LD     (30)

2
33

a
t

b
t

LW     (31)

b
n

a
n

b
n

DLW
333

    (32)

Secondly, the 3 remaining unknowns b
nt

b
nn DD , and b

n
D

3
are determined from the nonlinear 

equations (8)-(9) and (23) through minimization of the following functional F:

2

33

22

3
,, a

n
ab

n
ba

tn
ab

tn
ba

nn
ab

nn
bb

n
b
nt

b
nn DDDF     (33)
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The functional F depends on b
nt

b
nn DD , and b

n
D

3
since the groove stress tensor components 

b
tn

b
nn , and b

n3
are functions of D

b
(via the adopted constitutive law), and D

b
depends on 

b
nt

b
nn DD , and b

n
D

3
only, after substitution of equations (5) and (29)-(30) into the symmetric 

part of equation (22). Also, 
b

is a function of b
nnD through equations (5)-(7) and (11).

The same necking criteria as in the conventional MK model are adopted, and the limit strain is

found as the smallest matrix strain at necking considering all initial groove angles 0 in the 

range [-90°;90°] with an interval of 1°. An algorithmic chart of the solution procedure of the 

newly proposed TTS-MK model is presented in Figure 4.

2.3 CONSTITUTIVE MODEL

The material (matrix and groove) is assumed to be rigid-plastic and incompressible. For the 

isotropic material model under consideration, the groove reference frame G is taken as the 

material reference frame for both the matrix and groove material. The isotropic von Mises 

yield locus is adopted, which takes the following form in the groove reference system G, 

under the assumption that the sheet normal stress 33 = 0:

22
3

2
3

2222
26 Ytnntttnnttnn f     (34)

in which fY is the uniaxial yield stress. The von Mises associated flow law (normality rule) is:

ijij D'
    (35)

in which is the plastic multiplier and '
ij is a deviatoric stress component, given by:

3

2' ttnn
nn     (36)

3

2' nntt
tt     (37)
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3

'
33

ttnn
    (38)

jiijij
'

    (39)

Isotropic hardening is assumed, of the form:

n
eqeq K 0     (40)

in which eq and eq are the von Mises equivalent stress and plastic strain respectively, and K, 

0 and n are hardening parameters.

A further derivation is given for the plane strain deformation, i.e. aD
22

= 22 = 13 23

may differ from 0), for the case that the groove lies along the plane strain direction 

( = 0 = 0°). This derivation will be used further on in paragraphs 4.1, 4.3 and 4.4.

In this case, the n- and x1-directions are coincident, as are the t- and x2-directions. From the 

flow law (35), and equation (37), it follows that for the matrix:

aa
1122

2     (41)

The same holds for the groove, considering equation (14)/(29):

bb
1122

2     (42)

3 FORMING LIMIT DIAGRAMS

Table 1 gives the material data used for the FLCs given in Figure 5.

In Figure 5, it can be seen that the FLC obtained from the traditional MK model, presented in 

a thick line, coincides with the FLC from the TTS-MK model for the case 13 = 23 = 0. In this 

case, equation (19), defining the imposed matrix strain path of the TTS-MK model, reduces to 

the corresponding equation (2) of the conventional MK model. This observation is a 

validation of the proposed TTS-MK model as an extension of the conventional MK model 

without TTS.
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By comparing the FLDs in Figure 5, it is evident that formability is affected in a very 

different way depending on the plane(s) onto which TTS is imposed. If TTS is acting on the 

plane perpendicular to the major in-plane strain direction (Figure 5(a)), formability increases 

for all the in-plane strain modes 22 22 = 1) in which case 

there is a small decrease. If TTS is imposed on the plane perpendicular to the minor in-plane 

strain direction (Figure 5(b) 22 < 22 = 0 

and 22 > 0. If TTS is acting on both these planes in an equal amount 

(Figure 5(c)), formability is increased for all the in- 22 (though not as 

much as in the case of Figure 5(a)), except for a decrease in formability under equibiaxial 

22 = 1). It can also be noted in Figure 5 that the minimal values of the FLCs, 

denoted FLC0, only lay on the intercept of the vertical axis if the TTS is imposed on the plane 

perpendicular to the minor in-plane strain direction (Figure 5(b)) . In Figure 5(a), they are on 

the right-hand side of the FLD, while in Figure 5(c), they are on the left-hand side. The shift 

in FLC0 is the result of different amounts of increase of the limit strain for different strain 

modes around 22 = 0.

All initial values 0 in the range [-90°;90°] are considered (with an interval of 1°) to construct 

the FLCs shown in Figure 5. The limit strain corresponds to the smallest value of the matrix 

strain at necking for all these initial groove orientations. The corresponding initial value of the 

groove angle, being the critical one with respect to the onset of localized necking, is denoted 

0
cr

. It evolves during deformation following equation (12), until it reaches a certain value at 

necking, denoted by *. Figure 6(a) and (b) present respectively 0
cr

and * for various 

types of TTS and all in-plane strain rate ratio’s 22 0.9. For strain modes with 22 0, Figure 

6(b) also includes the angle which gives the direction of zero extension in the bifurcation 
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analysis of Hill (1952), denoted here as 
Hill

. It is calculated as (see also Stoughton and Zhu 

(2004)):

22tan Hill
    (43)

For 22 = 1, Figure 6(c) shows the major in-plane necking strain *
11 for these types of TTS, 

as a function of all initial groove angles 0. From equation (12) it follows that for there is no 

groove rotation for this case ( 0 = ). The abcis of the minimal values of the respective 

curves gives 0
cr

= *, while the ordinate corresponds to the forming limit strain. 

For the left-handed side of the FLD (-0.5 22 < 0), two symmetric branches can be seen in 

Figures 6(a) and (b) if TTS acts on the plane perpendicular to either one of the two principal 

in-plane strain direction, or if TTS is absent. In these cases the resulting major in-plane 

necking strains are found to be symmetric around = 0°, i.e. *
11

*
11 . However, if 

TTS is present on both planes perpendicular to the two in-plane principal strain directions, 

this symmetry does not hold, resulting in a single branch. It can also be seen in Figure 6(b) 

that the Hill angle gives a reasonable approximation of * for all considered cases of TTS.

13 = 23 0, it was found for all non-negative 

in-plane strain rate ratio’s (0 22 < 1) that 0
cr

= * = 0°. It means that the critical groove is 

perpendicular to the major in-plane strain direction and that there is no groove rotation during 

deformation (this follows directly from equation (12)). This observation agrees with the 

assumption of the groove orientation used in the original paper of Marciniak and Kuczynski 

(1967). In case TTS acts on both planes perpendicular to the two in-plane principal strain 

directions in an equal amount, the critical groove direction is not perpendicular but oblique to 

the major in-plane strain direction.
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In the case of equibiaxial stretching 22 = 1), each in-plane direction is a principal in-plane 

strain direction. As a result of this, both curves corresponding to a single non-zero TTS-strain 

rate ratio in Figure 6(c) are the same, apart from a horizontal shift of = 90°. Under 

equibiaxial stretching with 13 0 and 23 = 0, the value of 0
cr

is found to be 0°, while under 

equibiaxial stretching with 13 = 0 and 23 0, it is 0
cr

= ±90°. The imposed strain rate of 

the matrix in the critical groove reference frame is in fact the same in these two cases. Under 

equibiaxial stretching, the observed trend is a small decrease in formability in the presence of 

TTS in a single plane, and a larger decrease in formability when TTS is imposed onto 2 

orthogonal planes.

4 FORMABILITY OF SELECTED DEFORMATION MODES

In the subsequent paragraphs, 5 selected deformation modes are studied in more detail, 3 of 

22 = 0): without TTS, with TTS in the x2-x3-plane and 

with TTS in the x1-x3-plane, in paragraphs 4.1, 4.3 and 4.4 respectively. In all these cases, the 

groove is considered to lay perpendicular to the x1-axis before deformation ( 0 = 0°) since it 

is the critical initial groove orientation, i.e. resulting in the lowest necking strain. In all these 

cases the groove does not rotate, so = 0
cr

= * = 0°. 

Equibiaxial stretching without TTS is considered in paragraph 4.2. For this particular 

deformation mode, the necking strain does not depend on 0, considering the isotropic 

constitutive law which is adopted. Also in this case, there is no groove rotation. For sake of 

simplicity, also = 0
cr

= * = 0° is taken in the study. To summarize, it can be said that for 

the cases in the paragraphs 4.1 through 4.4, both reference frames coincide during the whole 

deformation, i.e. the n- and x1-direction are aligned, as are the t- and x2-direction. Paragraph 
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22 = -0.5. In this case, both reference frames do not 

coincide for the critical groove orientation. 

4.1 PLANE STRAIN DEFORMATION WITHOUT TTS ( 22 = 13 = 23 = 0)

For the plane strain deformation defined by 22 = 13 = 23 = 0 with = 0 = 0°, it can be 

shown that the only non-zero stress components (of the matrix as well as the groove), nn

(= 11 tt (= 22). The stress mode of matrix and groove can thus be represented in the 

nn- tt-section of the von Mises yield locus in normalized stress space, as shown in Figure 7.

Because of equations (41)-(42), the matrix and groove stress modes (u
a

and u
b
) coincide. 

Considering equation (5), it is clear that the strain rate tensor D
a
, given by equation (3), has a 

non-zero 33-component, so it cannot be represented as a vector in the particular section shown 

in Figure 7. Instead, the projection of D
a

into this plane, denoted D
a
, is shown. The position, 

direction and length of D
a

(and also D
a
) does not evolve during the monotonic loading. 

At the start of the deformation, it is required from equation (8) that the groove hardens more 

rapidly than the matrix. This results in a higher equivalent strain in the groove according to 

the hardening law (40). Consequently, the groove imperfection f =
b
/

a
decreases, following 

equations (6)-(7), which in turn affects equation (8) as the deformation proceeds. So during 

deformation, the groove strain rate accelerates. At the same time, the instantaneous hardening 

modulus eq/ eq decreases in view of the adopted hardening law (40). This also contributes 

to the acceleration of the groove strain rate. The forming limit is reached when one of the two 

necking criteria is satisfied. As derived in Chan et al. (1984) for the hardening law given in 

equation (40) with 0
*
11 is given by: 

n0221322
*
11     (44)
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Also in the conventional FLC in Figure 5 (thick line), it can be seen that for this particular 

deformation mode *
11 n.

It can be concluded that for this deformation mode, the only mechanism to delay the onset of 

groove necking, is a continuing acceleration of the groove strain rate, for an unchanged 

groove strain mode.

4.2 EQUIBIAXIAL STRETCHING WITHOUT TTS ( 22 = 1 and 13 = 23 = 0)

Under equibiaxial stretching defined by 22 = 1 and 13 = 23 = 0 with = 0 = 0°, the stress 

mode of matrix and groove lay in the nn (= 11) - tt (= 22) section, shown in Figure 8.

The matrix stress mode u
a

corresponding to equibiaxial stretching is deduced from the flow 

law (35) under the condition a
nn

a
tt DD , resulting in a

nn
a
tt . In contrast to the previous 

case, a
ttD is now non-zero and the geometrical compatibility condition (14)/(29) does not 

imply that the stress mode of the groove u
b

coincides with u
a
. This is illustrated in Figure 8. 

From the start of deformation, the groove strain rate ||D
b
|| is larger than ||D

a
||, so the groove 

stress mode u
b

is situated more towards the plane strain point on the yield surface (marked 

with a cross in Figure 8).

To comply with equation (8) as deformation proceeds, it is required that the ratio a
nn

b
nn

increases, corresponding to the increased thinning of the groove. This can be achieved by (a) 

excess strain hardening in the groove, giving an increase in equivalent stress of the groove 

compared to the matrix without stress mode change (the case of the previous paragraph), and 

by (b) a change of the groove stress mode towards the plane strain mode without an increase 

in the equivalent stress. Both occur simultaneously, in such a way that the geometrical 

compatibility condition (14)/(29) is exactly satisfied.
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For this deformation mode the conclusion is that two (simultaneous) mechanisms delay the 

onset of groove necking: an increase in groove strain rate, and a change in groove strain mode

towards plane strain. This explains in a qualitative way why the forming limit under this 

deformation mode may be significantly higher compared to the plane strain deformation, in 

which case the groove strain mode can not change. From this, it follows that the yield locus 

shape, i.e. the anisotropy which is present in al real metals, is an important parameter with 

respect to formability under biaxial stretching. A similar analysis of this deformation mode 

can be found in Lian et al. (1989).

4.3 PLANE STRAIN WITH TTS IN THE PLANE NORMAL TO THE MAJOR IN-PLANE STRAIN 

DIRECTION ( 22 = 13 = 0 AND 23 0)

For the plane strain deformation defined by 22 = 13 = 0, 23 0 with = 0 = 0°, it can be 

shown that the only non-zero stress components (of the matrix as well as the groove), nn

(= 11 tt (= 22 t3 (= 23). The stress mode of matrix and groove can thus be 

nn- tt- t3-section of the von Mises yield locus in stress space, 

as shown in Figure 9.

The equations (41)-(42), also valid in this case, imply that the possible stress modes of matrix 

nn = tt, shown in Figure 9. In this plane,

0b
tt

a
tt DD , so the compatibility condition (29) is satisfied. By combining the geometric 

compatibility conditions (24) and (25), the following non-trivial condition for the current case 

can be derived:

a
t

b
t

DD
33

    (45)

This equation plays a similar role as equation (14)/(29) in equibiaxial stretching without TTS 

(for clarity however, it is not illustrated in Figure 9 as is done in Figure 8). As deformation 

proceeds, the matrix strain mode u
a

remains fixed while the groove strain mode u
b

changes 
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(shown with a grey arrow in Figure 9) towards the plane strain point (marked with a cross in 

Figure 9). Meanwhile, the groove strain rate increases in such a way that the compatibility 

condition (45) and the force equilibrium condition (8) are exactly satisfied. 

As under equibiaxial loading without TTS, the onset of necking is delayed due to a groove 

strain mode change towards the plain strain point. For anisotropic materials, an accurate 

representation of the current section of the yield loci is thus essential for an accurate 

description of formability under this deformation mode, a fact which is well recognized in 

literature for monotonic biaxial stretching (the right-hand side of the FLD), see for example 

Barlat (1989).

  

4.4 PLANE STRAIN WITH TTS IN THE PLANE NORMAL TO THE MINOR IN-PLANE STRAIN 

DIRECTION ( 22 = 23 = 0 and 13 0)

For the plane strain deformation defined by 22 = 23 = 0, 13 0 with = 0 = 0°, it can be 

shown that the only non-zero stress components (of the matrix as well as the groove), nn

(= 11 tt (= 22 n3 (= 13). The stress mode of matrix and groove can thus be 

represented in the nn- tt- n3-section of the von Mises yield locus in stress space, 

as shown in Figure 10.

From equations (41)-(42), it follows that the matrix and groove stress modes are restricted to 

the plane nn = 2 tt. By combining the force equilibrium equations (8) and (23), the following 

relationship is obtained:

b
nn

b
n

a
nn

a
n 33

    (46)

Both stress ratios in equation (46) remain constant throughout the deformation since the 

matrix stress mode does not change. By combining equations (36) and (41) and applying the 

flow law (35 13/2. Consequently, the matrix and 

13 nn = 2 n3 shown in Figure 10.
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It is thus apparent that the matrix and groove stress mode are the same and remain unchanged, 

i.e. at the intersection point of these two planes on the normalized yield locus. This is similar 

to the plane strain deformation without TTS (paragraph 4.1), from which it follows that no 

additional formability is possible by a groove stress mode change towards the plain strain 

point (marked with a cross in Figure 10). As a result 13 22

= 0, which can also be seen in the FLCs in Figure 5(b).

4.5 UNIAXIAL TENSION ( 22 = -0.5) WITH AND WITHOUT TTS

A simple analysis similar to those given in the preceding paragraphs is difficult for uniaxial 

loading. The critical initial groove orientation 0
cr

is in general different from 0° (see also 

Figure 6(a)), which means that the groove reference frame G does not coincide with the 

x1-x2-x3 reference frame. Also, there is groove rotation towards the major in-plain strain 

direction during deformation according to equation (12). As a result, the imposed matrix 

velocity gradient evolves when expressed in the groove reference frame G, even though it is 

constant for the monotonic straining under consideration when expressed in the x1-x2-x3

reference frame. The geometric compatibility and force equilibrium, expressed in the groove 

reference frame G, are thus of a more complex nature and more difficult to analyze.

On the one hand, the beneficial effect of all the different types of TTS on forming limits is 

evident in the left-hand side of the FLDs in the Figures 5(a), (b) and (c). It can be noted that, 

22 = -0.5, the effect of TTS in the plane perpendicular to the major in-plane strain 

direction (Figure 5(a)) is higher than the effect of TTS in the plane perpendicular to the minor

in-plane strain direction (Figure 5(b)). On the other hand, it can be assessed from Figure 6 that 

the average value of the critical groove orientation throughout deformation, is closer to 0° (i.e. 

a groove perpendicular to the major in-plane strain direction) than to 90° or -90°. From these 
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two observations, combined with the conclusions from paragraphs 4.3 and 4.4, it seems 

reasonable to assume that the onset of necking is postponed through the presence of TTS in 

the plane containing the sheet normal direction and the groove direction. This will be 

discussed next in more detail.

Analogously to the definition of the strain rate ratios in equations (3) and (21), the TTS in the 

plane containing the sheet normal direction and the groove direction t can be characterized by:

a

a
t

t
D

D

11

3
3   (47)

More in particular, the amount of this kind of TTS, i.e. the absolute value 3t , is relevant.

From the proper tensor transformation of the strain rate tensor of the matrix [D
a
] given in 

equation (20), i.e. a rotation over around x3, it is found that:

23133 cossint     (48)

In case there is groove rotation, it is clear from equation (48) that 3t is not constant during 

deformation, not even for monotonic loading. It can also be noted from equation (48) that

tt 33 13 and 23 are 

equal to 0. This results in symmetric branches around =0° of the corresponding curves in 

Figures 6(a), (b) and (c). On the other hand 13 = 23 0, it follows that 

tt 33 (for 0°), which results in an asymmetric curve around =0° in 

Figure 6(c) and a singly-branched curve in Figures 6(a) and (b).

As an approximation, it can be stated that the delay of the onset of necking is controlled by 

the amount of TTS in the fixed plane containing the critical groove direction at the onset of 

necking (denoted t*) and the sheet normal direction, the strain rate ratio of which is given by:
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2313

11

3*
3* cossin

D

D

a

a
t

t   (49)

The advantage of introducing 3*t lies in the fact that its value does not evolve during 

deformation, which allows to construct Figure 11. It gives the major in-plane limit strain

22 = -0.5) with various types of TTS.

It can be seen in Figure 11 that, for relatively small values of 3*t , the three curves 

corresponding to three different types of applied TTS, are overlapping. This indicates that it is 

indeed the TTS which acts in the plane formed by the groove direction and sheet normal that 

controls the delay of necking. However, for higher values of 3*t , the limit strains are high

and so the total groove rotation during deformation is large. Consequently, the approximation 

of equation (49) to represent the TTS along the current groove direction t is less accurate and 

depends on the type of applied TTS. This results in diverging curves in Figure 11 for higher 

values of 3*t .

5 CONCLUSIONS

In this paper, the view is adopted that the groove in the Marciniak-Kuczynski (MK) type of 

forming limit model represents the inhomogeneity of plastic properties which exists in every 

real sheet. The direction of the groove which results in the lowest necking strain, also called 

the critical groove direction, represents the weakest material direction with respect to 

localized thinning resistance.

An extension to the MK forming limit model has been proposed to account for Through-

Thickness Shear (TTS) during sheet metal forming. To this end, a new force equilibrium 
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condition and several new compatibility conditions have been introduced. For a von Mises 

material with isotropic hardening, various Forming Limit Curves (FLC) have been presented 

that feature TTS in either one or in both planes normal to the major and the minor in-plane 

strain directions. 

The presence of TTS can influence the limit strain, ranging from a rather slight decrease to a 

more significant increase, depending on the strain mode. The most pronounced increase of the 

FLC is seen for TTS in the plane normal to the major in-plane strain direction.

For monotonic deformation paths in the left-hand side of the FLD, the critical groove 

direction is reasonably well approximated by the in-plane direction of zero extension for any 

case of applied TTS. In the right-handed side of the FLD, the critical groove direction is 

normal to the major in-plane strain direction only if TTS is applied onto a single plane normal 

to a principal in-plane strain direction, or in the absence of TTS. In the more general case, the 

critical groove direction is oblique.

The observation of increased formability due to TTS has been explained through the detailed 

study of several selected deformation modes. In summary, the case studies show that the 

presence of TTS in the plane defined by the critical groove direction and sheet normal, allows 

the assumed groove in the model to change its strain mode, resulting in delayed necking. 

The process of delayed necking due to TTS is very similar to the delay in the onset of necking 

that is seen under a biaxial stretching mode compared to the plane strain mode, the latter case 

being well documented in literature. As in biaxial stretching, it is recognized that in forming 

processes in which TTS is present, a correct representation of the yield locus shape is crucial 

to make quantitative predictions of the forming limit curve which represents the onset of 

localized necking.
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Figure captions

Figure 1: Scheme of the matrix a and groove b in (a) the undeformed and (b) a deformed 

state (with the undeformed state in dotted line). The x1- and x2-axes are the major and minor 

in-plane strain directions of the matrix, respectively. The x3-axis (not shown) is the sheet 

normal. The groove reference frame G with axes n, t and x3 is fixed to the groove and is 

determined by the angle (in the range [-90°;90°]) from x1 to n (denoted 0 in the 

undeformed state). By convention, is positive as drawn here.

Figure 2: Schematic illustration of the geometric compatibility conditions and freedoms of 

the groove velocity gradient L
b
, for the MK model in Hiwatashi et al. (1998).

Figure 3: Schematic illustration of the additional geometric compatibility conditions and 

additional freedoms of the groove velocity gradient L
b

besides those shown in Figure 2, for 

the TTS-MK model.

Figure 4: Algorithmic chart of the TTS-MK model.

Figure 5: Forming Limit Curves for the material of Table 1, calculated using the traditional 

MK model (thick line) and the TTS-MK model (thin lines). In (a) 13 = 23 has 

values ranging from 0.0 to 0.4. In (b) 13 has values ranging from 0.0 to 0.4 23 = 0. In 

(c) 13 = 23 has values ranging from 0.0 to 0.4. The strain rate ratios 22, 13 and 23 are 

defined in equation (20)-(21).

Figure 6: (a) The critical initial groove angle 0
cr

and (b) the critical groove angle at necking 

* as a function of the in-plane strain rate ratio 22 (in the range -0.5 22 0.9). (c) For 

22 = 1, the major in-plane necking strain *
11 as a function of all initial groove angles 0. The 

different curves refer to the 4 13 23 shown in the legend.
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Figure 7: nn- tt-section of the Von Mises yield locus, indicating the stress 

modes u
x

and the projections of the strain rate tensor in this section D
x
, in which the 

superscript x refers to the matrix a (printed in black) or groove b (printed in grey).

Figure 8: nn- tt-section of the Von Mises yield locus, indicating the stress 

modes u
x

and the projections of the strain rate tensor in this section D
x
, in which the 

superscript x refers to the matrix a (printed in black) or groove b (printed in grey).

Figure 9: nn- tt- n3 section of the Von Mises yield locus, indicating the 

stress modes u
x
, in which the superscript x refers to the matrix a (printed in black) or groove b

(printed in grey). 

Figure 10: nn- tt- n3 section of the Von Mises yield locus, indicating the 

stress modes u
x
, in which the superscript x refers to the matrix a (printed in black) or groove b

(printed in grey). 

Figure 11: The major in-plane limit strain *
11 for a number of monotonic, uniaxial tension 

22 = -0.5), with different amounts of through-thickness shear strain rates 

13 and 23), as a function of 3*t , defined in equation (49).

Table captions

Table 1: Material data for calculation of the FLCs.
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1

AA3003

f0 0.998 

K [MPa] 184.0 

0 0.00196

n 0.224

Table 1


